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Abstract
We analyse directed walk models of random copolymer adsorption and
localization. Ideally we would like to solve the quenched problem, but it
appears to be intractable even for simple directed models. The annealed
approximation is solvable, but is inadequate in the strong interaction regime
for the adsorption problem and gives a qualitatively incorrect phase diagram
for the localization problem.

In this paper, we treat these directed models using an approximation
suggested by Morita (1964 J. Math. Phys. 5 1401–5) in which the proportion
of each comonomer is fixed. We find that the Morita approximation leads
to behaviour that is closer to that of the quenched average model and this is
particularly interesting in the localization problem where the phase diagram is
(at least qualitatively) very similar to that of the quenched average problem. We
also show that the phase boundaries in the Morita approximation are bounds
on the locations of the phase boundaries of the quenched model.

PACS numbers: 05.40.Fb, 05.50.+q, 82.35.Jk

1. Introduction

There has been considerable recent interest in the statistical mechanics of random copolymers,
especially for systems which exhibit a phase transition such as collapse (Sfatos and Shaknovich
1997, Garel et al 1998, Monari et al 1999, Chuang et al 2001) or adsorption (Garel et al 1989,
Gutman and Chakraborty 1994, Orlandini et al 1999). Suppose the copolymer has two types
of monomers, which we shall denote as A and B. The sequence of monomers in a particular
polymer molecule is determined by some random process, but is then fixed, so that random
copolymers are an example of a system with quenched randomness (Brout 1959). If χ

represents a particular sequence of monomers (i.e. a sequence of As and Bs) then the partition
function, and other properties, will depend on χ . If we write Zn(χ) for the partition function
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for a polymer with n monomers, and monomer sequence χ , then the appropriate free energy of
the system is the quenched average free energy 〈κn(χ)〉 = 〈n−1 log Zn(χ)〉, where the angular
brackets denote an average over all monomer sequences (Brout 1959, Mazo 1963). In order
to investigate phase transitions in such systems, one is interested in the thermodynamic limit
(n → ∞) and the existence of the limit κ̄ = limn→∞〈κn(χ)〉 has been proved for several
models (see, for instance, Orlandini et al (1999) for a typical approach to this type of proof).

In this paper, we shall be concerned with two different physical situations. The first is
adsorption of a random copolymer at an impenetrable surface and the second is localization
of a random copolymer at an interface between two immiscible solvents.

One of the standard models of the configurational properties of polymer molecules in dilute
solution is a self-avoiding walk on a lattice. The vertices of the walk are coloured (according
to some random process) to represent the sequence of monomers in the polymer and, once the
colouring is determined, it is fixed. Self-avoiding walk models of both the physical situations
have been investigated and, although some qualitative properties of the quenched average
free energy (such as convexity, continuity, the presence of a singularity corresponding to a
phase transition) can be established, the evaluation of the quenched average free energy poses
formidable problems (Orlandini et al 1999, Maritan et al 1999, Martin et al 2000). Even for
simplified models such as directed walks, no one has succeeded in computing the quenched
average free energy completely for these systems (Bolthausen and den Hollander 1997).

One way to treat such problems is to approximate the quenched average with an annealed
average. This corresponds to calculating the logarithm of the average of the partition function
giving

κa
n = n−1 log〈Zn(χ)〉 (1.1)

and the corresponding annealed limiting free energy

κa = lim
n→∞ κa

n . (1.2)

By the arithmetic mean-geometric mean inequality κa � κ̄ , but the two quantities can differ
substantially in some cases.

The annealed approximation does not guarantee that even the lower moments of the
distribution of colours are correct. In an important paper, Morita (1964) proposed a set
of successive approximations in which the quenched average is approximated by partially
annealed averages in which successive moments of the colour distribution are guaranteed
to be correct. Kühn (1996) showed that successive approximations give successively better
bounds on the quenched average free energy. The idea behind Kühn’s proof is as follows.
Mazo (1963) showed that the quenched average system could be described using a variational
principle in which the entropy is maximized subject to the fixed probability of occurrence of
the quenched random variables. If we relax this constraint by fixing only a set of moments
of the distribution of the quenched variables, the space over which the optimization of the
entropy is being carried out is larger, so the maximum of the entropy cannot decrease. Fixing
more moments of the distribution decreases the space and therefore gives successively better
bounds on the quenched system. The annealed approximation fixes none of the moments so
is the least restrictive condition, and gives the weakest bound.

In some circumstances, insisting that the first moment is correct gives a substantial
improvement over the simple annealed approximation (Trovato et al 1998). In this paper, we
investigate the application of this approximation to models of copolymer adsorption and
localization. Even within this approximation, we are unable to treat the self-avoiding walk
model and we confine our attention to randomly coloured Dyck paths (see for instance
Janse van Rensburg (2000)) which are directed walks on a lattice. For random copolymer
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adsorption we find that, at large values of the interaction parameter (or low temperature),
the free energy is changed when we condition on the first moment of the colour distribution
being correct, but the location of the adsorption transition is unchanged. For localization of a
random copolymer,we find that this additional condition gives rise to a substantial change in the
nature of the phase diagram, and brings it much closer to that of the quenched average version
of the problem (Bolthausen and den Hollander 1997, Maritan et al 1999, Martin et al 2000).

In section 2 we discuss the application of Morita’s idea to the random copolymer
adsorption problem. We begin in the more general setting of a self-avoiding walk model
but, in order to make real progress, we specialize to a Dyck path model of adsorption in
section 3. In section 4 we investigate a Dyck path model of localization. We end with a brief
discussion of our results in section 5.

2. Adsorption of random copolymers at a surface

We first consider the self-avoiding walk model of homopolymer adsorption. We consider the
d-dimensional hypercubic lattice Z

d whose vertices are the integer points in R
d and we write

(x, y, . . . , z) for the coordinates of a vertex in the lattice. We consider n-edge self-avoiding
walks on this lattice, starting at the origin and having no vertex with negative z-coordinate.
Suppose that cn(v) is the number of such walks with v + 1 vertices in the hyperplane z = 0,
and define the partition function

Zn(α) =
∑

v

cn(v) eαv. (2.1)

The corresponding free energy is κn(α) = n−1 log Zn(α) and it is known (Hammersley et al
1982) that the limit κ(α) = limn→∞ κn(α) exists for all α < ∞. Moreover,κ(α) is independent
of α for α � 0 and there is a finite and positive number αc defined by

αc = sup[α|κ(α) = κ(0)]. (2.2)

This singular point corresponds to the adsorption transition. For α < αc the walk has a zero
limiting fraction of its vertices in z = 0 while for α > αc the walk has a non-zero limiting
fraction of its vertices in z = 0.

Next we turn to the corresponding problem in which the zeroth vertex is uncoloured and
the vertices i = 1, 2, . . . , n of the walk are randomly assigned one of the two colours, A and B,
independently, so that the probability that a vertex is coloured A is p. We write χi = 1 if
the ith vertex is coloured A and χi = 0 if it is coloured B. We write χ as a shorthand for
the sequence χ1, χ2, . . . , χn. Let cn(vA|χ) be the number of n-edge walks with colouring χ ,
having vA vertices coloured A in z = 0. Define the corresponding partition function

Zn(α|χ) =
∑
vA

cn(vA|χ) eαvA . (2.3)

In the quenched version of this problem, we are interested in the behaviour of the quenched
average free energy

κ̄(α) = lim
n→∞〈n−1 log Zn(α|χ)〉 (2.4)

where the angular brackets denote an average over all possible colourings. This problem has
been investigated by Orlandini et al (1999) who proved the existence of the limit in (2.4) and
that κ̄(α) = κ(0) for all α � 0. Moreover, there exists a finite number αq defined by

αq = sup[α|κ̄(α) = κ(0)] (2.5)

and αq � αc.
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The problem can be approximated by the annealed version in which the order of the
logarithm and average is reversed. We are then interested in the average of the partition
function

〈Zn(α|χ)〉 =
∑
v,vA

cn(v)

(
v

vA

)
pvA(1 − p)v−vA eαvA

=
∑

v

cn(v)
∑
vA

(
v

vA

)
(p eα)vA(1 − p)v−vA

=
∑

v

cn(v) eγ v (2.6)

where γ = log(p eα + (1 − p)). This implies that the annealed random copolymer adsorption
problem could be solved if the homopolymer version were solved. If p > 0 the annealed
problem has a critical point αa , defined in an analogous way to the definition of αq , and
αa > αc if p < 1. The annealed and quenched average free energies are related through the
arithmetic mean-geometric mean inequality and this implies that αa � αq . (Incidentally, this
implies that αq > αc, 0 < p < 1.) Even for the simple directed models we describe below,
the question of whether or not αa is equal to αq is open.

The annealed approximation is exact for α � αa (Orlandini et al 1999) but becomes very
poor for large values of α. Morita (1964) suggested a partial annealing procedure in which
moments of the distribution of colours were constrained to have their correct values. At the
lowest level, for this problem, this means that we apply the constraint

n−1
n∑

i=1

χi = p. (2.7)

In this paper, we shall refer to this first moment constraint as the Morita approximation.
This may be accomplished by building a Lagrange multiplier, λ, into the average of the

partition function,

〈Zn(α|χ)〉M =
∫

dχ1 . . .

∫
dχn

n∏
i=1

[pδ(χi − 1)

+ (1 − p)δ(χi)]
∑
ωn

exp

{
α
∑

i

χi�i − λ

(∑
i

χi − np

)}
(2.8)

where the sum over ωn is a sum over all n-edge walks, and �i = 1 if the ith vertex is in the
hyperplane z = 0, and 0 otherwise. Performing the integrations (which may be decoupled)
and re-arranging gives

〈Zn(α|χ)〉M = eλnp
∑

v

cn(v)(p eα−λ + 1 − p)v(p e−λ + 1 − p)n−v

= eλnp(p e−λ + 1 − p)nZn(γ ) (2.9)

where

γ = log

[
p eα−λ + 1 − p

p e−λ + 1 − p

]
. (2.10)

If we specialize to the case p = 1
2 (as we shall do later in the paper) this reduces to

〈Zn(α|χ)〉M = eλn/2 2−n(e−λ + 1)nZn(γ ) (2.11)
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Figure 1. An example of a Dyck path and a bilateral Dyck path.

with

γ = log

[
eα−λ + 1

e−λ + 1

]
. (2.12)

Now we need to determine the value of λ. We can calculate 〈χi〉 by differentiating with
respect to λ since

∂ log〈Zn(α|χ)〉M
∂λ

= −
〈∑

i

χi

〉
+ np. (2.13)

Since we want to impose the condition that 〈∑i χi〉 = np this means that

∂ log〈Zn(α|χ)〉M
∂λ

= 0. (2.14)

Setting p = 1
2 , this condition is equivalent to

1

n

∂ log Zn(γ )

∂γ
= (eλ − 1)(eα + eλ)

2 eλ(eα − 1)
. (2.15)

In the infinite n limit, the left-hand side is zero for γ � γc and so λ = 0 when γ � γc.
Hence the Morita treatment agrees with the annealed approximation for α � αa , where the
annealed approximation is exact. To compute λ for super-critical values of γ we would need
to know the free energy of the homopolymer adsorption model. For self-avoiding walks, this
is unknown. Consequently, we must turn to a simpler model.

2.1. Directed paths

In the remainder of this paper, we shall concentrate on directed path models in two dimensions.
A directed path is a walk whose vertices lie in the vertex set Z

2, and whose edges are the
vectors (1,±1). It simplifies the combinatorics of the situation to consider only those directed
paths which start and end on the line y = 0 and it is easy, using the methods of Hammersley
et al (1982), to show that the free energy of this subset is identical to that of the full set.

For the adsorption problem, the polymer is confined to be in or on one side of the adsorbing
surface, and hence we consider the subset in which the vertices of the path have non-negative
y-coordinate. In the combinatorial literature, such walks are called Dyck paths (see e.g. Janse
van Rensburg (2000)). For the localization problem, the polymer can cross the interfacial
plane from one phase to the other, so the appropriate directed model is a bilateral Dyck path,
which is a directed path that is constrained to start and end in the line y = 0 and can cross this
line (see figure 1).
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3. Adsorbing Dyck paths

3.1. Generating functions

Dyck paths, with generating function D(z), can be canonically factored according to the
following scheme:

D(z)
D(z) D(z)oriseach

The Dyck path is either a single vertex or can be factored into two Dyck paths, at the point at
which the Dyck path first returns to the line y = 0.

Suppose that dn is the number of Dyck paths with 2n edges, i.e. with half-length n. The
above factorization implies the following recurrence:

d0 = 1
(3.1)

dn =
n−1∑
k=0

dkdn−k−1.

Converting this to an equation for the generating function, D(z) = ∑
n dnz

n, yields

D(z) = 1 + zD(z)2 (3.2)

where z is conjugate to the half-length of the paths. Hence

D(z) = 1 − √
1 − 4z

2z
. (3.3)

A path of half-length n contains 2n + 1 vertices, and so the generating function of paths
counted by two variables z and v, which are conjugate to the half-length and number of
vertices respectively, is given by

D(z, v) = vD(zv2) = 1 − √
1 − 4zv2

2zv
.

Using the above factorization, we can also keep track of the number of vertices in the line
y = 0. Suppose that w is conjugate to the number of vertices in the line y = 0 (which we
refer to as visits) and u is conjugate to the number of vertices not in y = 0. The corresponding
generating function, F(z, u,w), satisfies the following equation,

F(z, u,w) = 1 + zwD(z, u)F (z, u,w) (3.4)

where we use the convention that the zeroth vertex (which always lies in the line y = 0) does
not contribute a factor of w to the generating function. Hence

F(z, u,w) = 1

1 − zwD(z, u)
= 2u

2u − w + w
√

1 − 4zu2
. (3.5)

3.2. Dyck path model of the homopolymer

In the homopolymer model, only those vertices lying in the line y = 0 contribute to the
energy so we wish to ignore the vertices counted by u; therefore we set u = 1. This gives the
homopolymer generating function

H(z,w) = 2

2 − w + w
√

1 − 4z
. (3.6)
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The behaviour of the system in the thermodynamic limit (n → ∞) is determined by
the behaviour of the limiting free energy which, in turn, is determined by the behaviour of
the generating function close to its boundary of convergence (with respect to z). The above
function has two singularities: a square-root singularity when z = 1

4 and a simple pole when
the denominator is equal to zero. The simple pole is determined by the solution of the following
equation:

2 − w + w
√

1 − 4z = 0. (3.7)

Hence there is a simple pole along the curve z = w−1
w2 (when w > 2) and this singularity

determines the boundary of convergence when w > 2. When w = 2, the simple pole and
square root singularity coalesce and, when w < 2, the boundary of convergence is determined
by the square root singularity at z = 1

4 .
The density of visits ρn(w) is given by the following weighted average over walks of

half-length n,

ρn(w) = 1

2n

∑
ω∈walks V (ω)wV (ω)∑

ω∈walks wV (ω)

= w

2n

∂

∂w
log Zn(w)

where the number of visits in a walk, ω, is denoted by V (ω), and Zn(w) is the partition
function defined by

Zn(w) =
∑

ω∈walks

wV (ω). (3.8)

For large n the dominant asymptotic behaviour of Zn(w) is determined by the dominant
singularity of the generating function (see for instance Wilf (1990), especially chapter 5). If
we denote the dominant singularity by zc(w), then

lim
n→∞ n−1 log Zn(w) = −log zc(w). (3.9)

We are able to use this to determine the limiting density of visits:

ρ(w) = lim
n→∞ ρn(w) = −w

2

∂

∂w
log zc(w). (3.10)

We note that the factor of 1
2 takes into account the fact that z is conjugate to the half-length

rather than the length. The density of visits for this system is given by

ρ(w) =
{

0 for w � 2
1
2

w−2
w−1 for w > 2

(3.11)

and so we interpret w < 2 as a desorbed phase (since the fraction of vertices which are visits
is zero) and w > 2 as an adsorbed phase (since there is a positive density of visits). The point
w = 2 is the adsorption critical point, and it is not hard to show that the number of visits grows
with the square-root of the length. We note that in the large w limit the density becomes 1

2 ,
which reflects the fact that only every second vertex may lie in the interface.

3.3. The annealed model

As an approximation to the quenched system, in the annealed model we interchange the order
of the logarithm and the average over colourings, in computing the free energy. This is
equivalent to fixing the conformation and then tossing a coin to decide on the colour of each
vertex. This model is substantially easier to treat than the quenched problem in that it can be
related directly to the homopolymer model.
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The only contribution to the energy is when an A-vertex is in the line y = 0. The other
vertices do not contribute to the energy. This means that the colours of the vertices which are
not in y = 0 are irrelevant. The colours of visit vertices, on the other hand, are important, and
contribute a term a = eα to the partition function if they are coloured A, and 1 otherwise. We
use the convention that the zeroth vertex is uncoloured, and we only consider the case where
the probability, p, that a vertex is coloured A is 1

2 .
Consequently, the annealed partition function, 〈Zn(a)〉, of walks of half-length n is given

by

〈Zn(a)〉 =
∑

χ

∑
ω∈walks aV (ω|χ)∑

χ 1
(3.12)

where V (ω|χ) is the number of A-vertices in the interface for the walk ω which is coloured
by the sequence of colours χ . Massaging this expression gives

〈Zn(a)〉 = 1

22n

∑
ω∈walks

∑
χ

aV (ω|χ)

= 1

22n

∑
ω∈walks

∑
χ

2n∏
i=1

a�i(ω|χi)

=
∑

ω∈walks

2n∏
i=1

∑
χi=0,1

1

2
a�i(ω|χi)

=
∑

ω∈walks

(
1 + a

2

)V (ω)

where V (ω) is the number of vertices in the walk ω that lie in the line y = 0, and �i(ω|χ) is 1
if the ith vertex of ω lies in y = 0 and is coloured A, and is zero otherwise.

Hence we make the following substitutions in the generating function F(z, u,w),

u −→ 1

w −→ (a + 1)/2

so that the generating function of the annealed model is

N(z, a) = 4

3 − a + (1 + a)
√

1 − 4z
(3.13)

where a is conjugate to the number of A-vertices in y = 0. That is, a counts the vertices which
contribute to the energy of the system.

Again we determine the thermodynamic properties of the model by studying the
singularities of the generating function. There are two singularities, the square root singularity
at z = 1

4 and a simple pole. By an argument similar to that used for the homopolymer case,
there is a simple pole at

z = 2(a − 1)

(a + 1)2
(3.14)

which is dominant when a > 3. At a = 3 the simple pole and the square root singularity
coalesce and the square root singularity determines the boundary of convergence when a < 3.

This singularity structure implies that the density of visits is given by

ρ(a) =
{

0 for a � 3
1
2

a(a−3)

(a2−1)
for a > 3.

(3.15)
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We note that for large a the density of A-vertices in y = 0 becomes 1
2 , which is the same as in

the homopolymer case. In the quenched case, we expect the average number of A-vertices in
the interface to be 1

4 , since only half of the vertices can be in the interface and, of these, only
half will be A. This can be established rigorously using the methods of Orlandini et al (1999).

3.4. The Morita approximation

The Morita condition alters the annealed system by requiring that the average number of
A-vertices be half of the total number of vertices. We could, in principle, require that exactly
half of the vertices are coloured A (i.e. consider the problem in a micro-canonical ensemble),
but this is significantly more difficult and we do not explore this further.

We define a new statistic on a coloured walk, called the colour distance, which we define
to be the number of A-vertices minus the half-length. Hence we may rephrase the Morita
condition as the condition that the average colour distance is zero. This is equivalent to
introducing a Lagrange multiplier as described in section 2.

We introduce a new variable, L, conjugate to the colour distance, into the annealed partition
function (recall that n is the half-length of the walk),

〈Zn(a; L)〉 =
∑

χ

∑
ω∈walks aV (ω|χ)L

∑
i χi−n∑

χ 1
(3.16)

where χi is defined to be 1 if the ith vertex is coloured A and 0 otherwise. Manipulating this
equation gives

〈Zn(a; L)〉 = 1

Ln22n

∑
χ

∑
ω∈walks

2n∏
i=1

a�i(ω|χi)Lχi

= 1

Ln

∑
ω∈walks

2n∏
i=1

∑
χi=0,1

1

2
a�i(ω|χi )Lχi

= 1

Ln

∑
ω∈walks

(
aL + 1

2

)V (ω) (
L + 1

2

)2n−V (ω)

(3.17)

where we have again used V (ω) to denote the number of vertices in the walk ω that lie in
y = 0, and �i(ω|χ) is 1 if the ith vertex of ω lies in y = 0 and is coloured A, and otherwise
is 0, and χi = 1 if the ith vertex is coloured A and 0 otherwise.

We note that the generating function F(z, u,w), discussed in section 3.1, may be rewritten
as

F(z, u,w) =
∑
n�0

zn
∑

ω∈walks

wV (ω)u2n−V (ω) (3.18)

and so by making the following substitutions,

u −→ (L + 1)/2

w −→ (aL + 1)/2

z −→ z/L

we obtain the generating function, M(z, a; L), corresponding to the partition function defined
in equation (3.17):

M(z, a; L) = 2(L + 1)

(2 − a)L + 1 + (aL + 1)
(
1 −

√
1 − z(L + 1)2/L

) . (3.19)
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Again there are two singularities in this generating function. The square root singularity now
occurs at z = L

(1+L)2 . Let us now examine carefully the zero of the denominator, determined
by the solution of the equation

(2 − a)L + 1 + (aL + 1)
(
1 −

√
1 − z(L + 1)2/L

) = 0

which is equivalent to√
1 − z(L + 1)2/L = aL − 2L − 1

aL + 1
where the right-hand side must be non-negative. Then the zero of the denominator is

z = 4(a − 1)L2

(L + 1)(aL + 1)2
(3.20)

which only exists when aL−2L−1
aL+1 � 0. This is the case provided L � 1/(a − 2).

The Morita condition is equivalent to the condition that the average colour distance is
zero, or that the average colour distance per vertex is zero. We may obtain the average colour
distance per vertex (as n → ∞) in the same way as we obtained the limiting density of visits;
this gives the condition

L

2

∂

∂L
(−log zc(a, L)) = 0 (3.21)

where zc(a, L) is the radius of convergence of the generating function.
Since the dominant singularity depends on the value of a, the value of L which satisfies

the above condition will also depend on a. In particular we expect that, since there are two
singularities, there will be different values of L depending on which singularity is dominant.

3.5. The desorbed phase

For small values of the interaction parameter a, the square-root singularity will dominate and
zc = L

(1+L)2 . The Morita condition implies that

L

2

∂

∂L

(
−log

(
L

(1 + L)2

))
= L − 1

2(L + 1)
= 0 (3.22)

and so we require that L = 1. If we set L = 1 then the radius of convergence is 1
4 .

We note that when L = 1, the condition for the existence of the simple pole becomes
1

a−2 � 1 or a � 3. Hence, for this value of L, the simple pole does not exist until a � 3 (i.e.
at or above the annealed critical point).

Since zc = 1
4 is independent of a, the density of A-vertices in the line y = 0 is zero—

confirming that this is indeed the desorbed phase.

3.6. The adsorbed phase

For large values of a, the dominant singularity is the simple pole at z = 4(a−1)L2

(L+1)(aL+1)2 . The
Morita condition is then

aL2 − L − 2

(aL + 1)(L + 1)
= 0. (3.23)

This has two solutions, L = 1±√
1+8a

2a
, of which only L = 1+

√
1+8a

2a
is positive (and hence

physical). We need to verify that the simple pole actually exists for this value of L and indeed
one can verify that

L = 1 +
√

1 + 8a

2a
� 1

a − 2
(3.24)
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Figure 2. The mean density of A-visits in the line y = 0 for the case where all vertices are
coloured. The curves are (from top to bottom) the homopolymer, annealed and Morita models.

and, further, that the equality is only reached when a = 3. Hence this singularity does exist
for a � 3, and L = 1 at a = 3. This means that the density of visits is continuous at a = 3
and so is equal to zero.

In the adsorbed phase, the radius of convergence is given by

zc(a, L) = (8a2 + 20a − 1) − (1 + 8a)3/2

2a(a − 1)2
. (3.25)

One can verify that the square root singularity at z = 1
4 does not dominate this singularity for

this value of L (though they coalesce at a = 3).
One can also verify that this gives a density of A-visits equal to 1

2 in the large a limit,
as is the case for the homopolymer and annealed models (though all three density curves are
different—see figure 2). This means that the Morita condition does not bring us closer to the
quenched case at large a. The large a behaviour of the quenched case can be analysed using
the methods developed for self-avoiding walks by Orlandini et al (1999) and shows that the
limiting density of A-visits is 1

4 for the Dyck path model. This inadequacy is caused by the
restriction that only alternate vertices can lie in the line y = 0, for the Dyck path model, and
so the energy of the model can be optimized and still satisfy the Morita condition.

This situation may be improved by considering a related model in which, rather than
colouring all vertices, only alternate vertices are coloured. Since the zeroth vertex lies on the
line y = 0, and only even vertices can lie on this line, we colour only the even vertices. We
define the generating function

Fe(z, u,w) =
∑
n�0

∑
ω∈walks

wVe(ω)un−Ve(ω) (3.26)

where Ve(ω) is the number of even vertices of the walk ω which are in y = 0 and n−Ve(ω) is
the number of even vertices of ω which are not in y = 0. Then, by the standard factorization
(section 3.1),

Fe(z, u,w) = 1 + zwDo(z, u)Fe(z, u,w) (3.27)

where

Do(z, v) = 1 − √
1 − 4zv

2zv
(3.28)

is the generating function of Dyck paths in which v counts odd vertices. We note that we need
to count the number of odd vertices in the Dyck path, since these vertices then become even
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Figure 3. The mean density of A-visits in the line y = 0 for the case where only even vertices are
coloured. The curves are (from top to bottom) the homopolymer, annealed and Morita models. We
note that the homopolymer and annealed models are unchanged from the previous figure, while
the Morita model has the same horizontal asymptote as the quenched model.

vertices in the factorization (by adding one bond at each end). Hence

Fe(z, u,w) = 2u

2u − w(1 − √
1 − 4zu)

. (3.29)

The expectation of the partition function is

〈Zn(a; L)〉 =
∑

χ

∑
ω aVe(ω|χ)L

∑n
i=1 χ2i−n/2∑

χ 1

= 1

Ln/2

∑
ω

(
aL + 1

2

)Ve(ω) (
L + 1

2

)n−Ve(ω)

(3.30)

where Ve(ω|χ) is the number of even vertices of the walk ω with colouring χ which are in the
line y = 0. Then the generating function

Me(z, a; L) =
∑
n�0

zn〈Zn(a; L)〉

= Fe(z/
√

L, (aL + 1)/2, (L + 1)/2)

= 2(L + 1)

2(L + 1) − (aL + 1) + (aL + 1)

√
1 − 2z(L + 1)/

√
L

. (3.31)

The annealed and homopolymer models are unchanged.
A similar analysis yields the following expression for the radius of convergence in the

adsorbed phase:

zc = 3
√

3(a − 1)

8a3/2
. (3.32)

The location of the critical point for the Morita approximation does not change when we only
colour even vertices. However, the density of A-vertices in y = 0 does change radically and
in particular has a horizontal asymptote of 1

4 which is same as for the quenched model (see
figure 3). This also implies that the limiting free energies of the two models have the same
limiting slope (as a function of log a at large a). For this model, we find that the Morita
approximation is a considerable improvement over the annealed approximation and leads to a
free energy which is much closer to the quenched average free energy.
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4. Localization of random copolymers at an interface

In this section, we investigate a bilateral Dyck path model of the localization of random
copolymers at an interface. We work in two dimensions where the plane is divided (by the line
y = 0) into two semi-infinite half spaces that represent two phases which we call oil and water.
The vertices of the Dyck path are independently coloured A and B, each with probability 1

2 .
Vertices coloured A contribute an energy term when they are in the oil phase (i.e. have positive
y-coordinate) and vertices coloured B contribute a (possibly different) energy when they are
in the water phase (i.e. have negative y-coordinate). Vertices in the interface y = 0 contribute
no energy term.

We treat an annealed version of this model and also a version in which we use the Morita
approximation where the average proportion of vertices coloured A is fixed at 1

2 . In order to
handle these problems, we first introduce a particular homopolymer version of the model, in
which all vertices are identical but have a different contribution to the energy of the system
depending on whether they are in the oil or water phases.

4.1. The generating function of bilateral Dyck paths

We use pn(vo, vw, vi) to denote the number of bilateral Dyck paths of length 2n with vo, vw

vertices in the oil and water phases (respectively) and vi vertices in the interface between these
two phases. We then define the generating function of bilateral Dyck paths to be

B(z, a, b, c) =
∑
n�0

zn
∑

vo,vw,vi

pn(vo, vw, vi)a
vobvwcvi (4.1)

where the generating variables a, b and c are conjugate to vo, vw and vi respectively. This
generating function may be obtained from the Dyck path generating function, D(z, v), via the
following factorization:

D(z, a)

D(z, b)

or

oriseach

Hence we have

B(z, a, b, c) = 1 + zcB(z, a, b, c)D(z, a) + zcB(z, a, b, c)D(z, b)

= 1

1 − zc(D(z, a) + D(z, b))

= 1

1 − c
(

1−√
1−4za2

2a
+ 1−√

1−4zb2

2b

) (4.2)

where we have used the convention that the zeroth vertex contributes a factor of 1 rather
than c.

4.2. The homopolymer model

In this subsection, we consider a model of localization of a homopolymer in which each
vertex is identical and vertices in the oil and water phases contribute energies log(a) and
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log(b) respectively. Vertices in the interface y = 0 make no contribution to the energy. The
generating function of this model is then

H(z, a, b) = B(z, a, b, 1). (4.3)

The thermodynamic behaviour of this homopolymer system is determined by the
singularities of the generating function. An examination of the generating function shows
that it contains three singularities:

z1 = 1/4a2 (4.4)

z2 = 1/4b2 (4.5)

z3 = (b − 1)(a − 1)(a + b − ab)

(2ab − b − a)2
. (4.6)

The singularities at z1 and z2 are square root singularities which exist for all physical (i.e.
real and positive) values of a and b. When the walk resides in the oil phase (respectively
water phase) the singularity at z1 (respectively z2) is dominant. When the singularity at z3 is
dominant the walk is localized at the interface (i.e. the walk crosses the interface a positive
density of times).

Unlike the singularities at z1 and z2, the singularity at z3 does not exist for all a and b; the
position of the singularity z3 is given by the zero of the denominator of H(z, a, b):

b
√

1 − 4a2z + a
√

1 − 4b2z = a + b − 2ab. (4.7)

This equation only has a solution (for z) if a +b−2ab � 0 or b < a
2a−1 . Hence the singularity

at z3 does not exist anywhere in the first quadrant of the (log a, log b)-plane (a, b � 1).
The dominant singularity of the generating function determines the density of vertices in

each of three phases (oil, water and the interface). If a singularity zc(a, b) is dominant, then
the density of vertices in each of the three phases is given by

ρoil = −a

2

∂

∂a
log zc(a, b) (4.8)

ρwater = −b

2

∂

∂b
log zc(a, b) (4.9)

ρinterface = 1 − ρoil − ρwater (4.10)

where the factor of 1
2 takes into account the fact that z is conjugate to the half-length of the

walk, rather than its length.
When z1 is dominant ρoil = 1, while the density of vertices in the other two phases is

zero. By a ↔ b symmetry, when z2 is dominant ρwater = 1, while the density of vertices in
the other two phases is zero. When z3 is dominant (which may happen in the third quadrant
of the (log a, log b)-plane, (a, b) � (1, 1)) there is a positive density of vertices in each of the
three phases (and these densities are continuous functions of a and b).

Since we have two energy contributions (log a and log b) we now have phase boundaries
in the log a– log b plane rather than isolated phase transition points. We determine these phase
boundaries by examining the curves along which pairs of the singularities z1, z2 and z3 are
equal.

The intersection of z1 and z2 occurs along the line a = b. The singularity z1 dominates
z2 below this line, and z2 dominates z1 above it. The intersection of z1 and z3 occurs along
the curve

b = a(2a − 1)

1 − 2a + 2a2
(4.11)
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Figure 4. The phase boundaries of the homopolymer and annealed systems. The boundaries are
the same in the first quadrant, while in the third quadrant the boundaries of the annealed system
are the inner curves.

and z1 dominates below this curve, and z3 above it. By a ↔ b symmetry, there is also a phase
boundary between z2 and z3 along the curve a = b(2b−1)

1−2b+2b2 .
Since z3 does not exist in the first quadrant of the (log a, log b)-plane (a, b > 1), the

only transition in this region is a first-order transition along the line a = b dividing two
thermodynamic phases in which the walk resides either in the oil phase (a > b) or the
water phase (a < b). There are no transitions in the second (a < 1, b > 1) and fourth
(a > 1, b < 1) quadrants of the (log a, log b)-plane and so the walk resides in the water and
oil phases (respectively).

In the third quadrant there are three thermodynamic phases. When b < a(2a−1)

1−2a+2a2 the walk

resides in the oil phase and when a < b(2b−1)

1−2b+2b2 the walk resides in the water phase. Otherwise
the walk is localized at the interface and this constitutes a third thermodynamic phase. The
phase boundaries in the third quadrant correspond to second-order transitions. The phase
boundaries show that the walk is not in the oil phase for any value of b when a < 1

2 . Similarly,
the walk is not in the water phase for any value of a when b < 1

2 . The phase boundaries are
shown in figure 4.

Along the line a = b > 1 the density of vertices in the interface is zero (i.e. there is no
interfacial phase) while in the third quadrant where z3 is the dominant singularity there is a
positive density of vertices in the oil and water phases and in the interface. In other words,
when z3 dominates the walk is ‘pushed’ out of the oil and water phases and is localized at the
interface, while when a = b > 1 the walk is attracted to both the oil and water phases and
spends (essentially) no time at the interface.

4.3. The annealed model

The partition function 〈Zn(a, b)〉 of walks of half-length n in the annealed model is given by

〈Zn(a, b)〉 =
∑

χ

∑
ω∈walks aVA(ω|χ)bVB(ω|χ)∑

χ 1
(4.12)

where VA(ω|χ) is the number of vertices in the oil phase coloured A in the walk ω which is
coloured by the sequence of colours χ (with a similar definition for VB(ω|χ)). Similarly, we
use Vo(ω) and Vw(ω) to denote the number of vertices (regardless of colour) in the oil and
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water phases. We recall that the zeroth vertex is uncoloured. Re-arranging (4.12) gives

〈Zn(a, b)〉 = 1

22n

∑
ω∈walks

∑
χ

aVA(ω|χ)bVB(ω|χ)

= 1

22n

∑
ω∈walks

(1 + a)Vo(ω)(1 + b)Vw(ω)

=
∑

ω∈walks

(
1 + a

2

)Vo(ω) (1 + b

2

)Vw(ω)

. (4.13)

Thus the generating function of the annealed system may be obtained from B(z, a, b, c)

by the substitutions

a −→ a + 1

2
b −→ b + 1

2
c −→ 1.

Hence the generating function, N(z, a, b), of the annealed system is given by

N(z, a, b) = B

(
z,

a + 1

2
,
b + 1

2
, 1

)
. (4.14)

As for the homopolymer case, we determine the behaviour of this system by analysing
the singularities of the generating function, and we find that there are three singularities,

z1 = 1

(a + 1)2
(4.15)

z2 = 1

(b + 1)2
(4.16)

z3 = (1 − b)(1 − a)(3 + a + b − ab)

4(1 − ab)2
(4.17)

where z1 and z2 correspond to the walk residing in the oil and water phases (respectively), and
z3 to the system being localized at the interface. Again we find that the singularity z3 does not
exist in the first quadrant of the log a– log b plane (a, b > 1). The location of this singularity
is given by the zero of the denominator of the generating function,

(1 + b)
√

1 − (1 + a)2z + (1 + a)
√

1 − (1 + b)2z = 1 − ab (4.18)

and this may be solved for z only when ab < 1, i.e. b < 1/a. Hence z3 does not exist
anywhere in the first quadrant.

4.3.1. Phases and phase boundaries. Again we find the density of vertices in the oil and
water phases and in the interface by examining the singularities of the generating function.
However we now concentrate on the density of A-vertices in each phase, which we denote by
ρA

oil, ρ
A
water and ρA

interface.
When z1 is dominant ρA

oil = a
1+a

and ρB
oil = 1

1+a
, while the density of vertices (of either

colour) in the water phase and in the interface is zero. By a ↔ b symmetry, the density of
B-vertices in the water phase when z2 is dominant is b

1+b
, and hence ρA

water = 1
1+b

. Consequently,
for large values of a we expect all vertices to become A-vertices in the oil phase, and for large
values of b we expect all vertices to become B-vertices in the water phase. When z3 is dominant
we find that there is a positive density of A- and B-vertices in each of the three phases and that
these densities vary continuously with a and b.

The singularities z1 and z2 are equal along the line a = b, with z1 dominant below this
line and z2 dominant above it. This transition is first order.
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When ab < 1, the singularity at z3 exists and is equal to z1 along the curve b = a2+2a−1
a2+1

corresponding to a second-order transition. We note that this value of b becomes negative
when a <

√
2 − 1. By symmetry, when ab < 1, the singularities z2 and z3 meet along the

curve a = b2+2b−1
b2+1 corresponding to a second-order transition. Again we note that this implies

that when a, b <
√

2 − 1, the walk is always localized.
Consequently, we find that the behaviour of the annealed model is quite similar to that of

the homopolymer model. The phase boundaries for the two models are compared in figure 4.

4.4. The Morita approximation

We apply the Morita approximation to the localization problem in much the same way as it
was applied to the adsorption problem; we introduce a new parameter, L, to ensure that on
average the fraction of vertices in the walk that are coloured A is equal to 1

2 . We define the
colour-distance of a walk of length 2n to be the number of A-vertices in the walk minus n.
Let L be conjugate to the colour distance of the walk.

Following similar reasoning to that used to derive the annealed generating function, we
make the following substitutions in the bilateral Dyck path generating function:

a −→ La + 1

2
b −→ L + b

2
c −→ L + 1

2
z −→ z

L
.

Hence the generating function, M(z, a, b; L), of the Morita system is given by

M(z, a, b; L) = B

(
z

L
,
La + 1

2
,
L + b

2
,
L + 1

2

)
(4.19)

where a is conjugate to the number of A-vertices in the oil, b is conjugate to the number of
B-vertices in the water phase, and L is conjugate to the colour distance of the walk. We note
that this generating function possesses the following symmetry:

M(z, a, b; L) = M(z, b, a; 1/L). (4.20)

We impose the requirement that the average colour distance be zero by choosing an
appropriate value of L. If z(a, b, L) is the dominant singularity, then the average colour
distance (per vertex) is given by

〈colour distance per vertex〉 = −L

2

∂

∂L
log z(a, b, L) (4.21)

where the factor of 1
2 arises since z is conjugate to the half-length. The appropriate value of L

depends on the dominant singularity, and so varies with a and b.

4.4.1. Singularities of the generating function. As in the homopolymer and annealed cases,
we find that this generating function has three singularities:

z1 = L

(La + 1)2
(4.22)

z2 = L

(L + b)2
(4.23)

z3 = 4L2(1 − a)(1 − b)(1 + L + L2 + La + Lb − Lab)

(1 + L)2(1 + La + Lb + L2 − b − 2Lab − L2a)2
. (4.24)

Again we find that z1 and z2 exist everywhere in the (log a, log b)-plane, but that z3 exists only
in certain regions. By examining the function that defines the zeros of the denominator of M,
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we see that it only has physical solutions for z when L(2−ab)−((a−1)L+1)((b−1)+L) � 0.
Hence z3 only exists when

b � 1 − L(a − 1)(L + 1)

L(2a − 1) + 1
= bcrit. (4.25)

We note that for all L � 0, when a � 1, bcrit < 1. Hence z3 does not exist anywhere in the
first quadrant (a, b > 1).

4.4.2. Determining the value of L. When z1 is dominant

〈colour distance per vertex〉 = La − 1

La + 1
. (4.26)

Consequently, if we set L = 1/a then the mean colour distance will be zero. We shall write
this value of L as L1 = 1/a. This choice gives z1 = z1(a, b, 1/a) = 1/4a. Similarly, when
z2 is dominant

〈colour distance per vertex〉 = L − b

L + b
(4.27)

and we choose L = L2 = b, which gives z2 = z2(a, b, b) = 1/4b (which is consistent with
the symmetries of the generating function).

When z3 is dominant the resulting expression for the average colour distance is
substantially more complicated, and the value of L = L3 that makes the average colour
distance zero is a zero of the following quintic polynomial:

2(a − 1)L5 − 3(1 − a)(1 + a + b − ab)L4 − (3 + 2a2b2 − 5a + 2b − 3ab2 + 2ab

− 2a2b + b2)L3 + (2a2b2 + 2ab − 5b + 2a + a2 − 3a2b − 2ab2 + 3)L2

+ 3(1 − b)(1 + a + b − ab)L + 2(1 − b). (4.28)

Again we see that this polynomial possesses the same symmetry as the generating function
under the interchange (a, b, L) ↔ (b, a, 1/L), and hence so does L3.

4.4.3. The phase boundaries in the Morita approximation. The analysis of the phase
boundaries in the Morita approximation is more complicated than in the homopolymer and
annealed models. This is because we must choose L according to the dominant singularity and
take care that, in choosing this value of L, we do not change which singularity is dominant.
Hence we use the following strategy.

We begin by assuming that we are in an area of the a–b plane in which the singularity z1

is dominant (such as when a � 1 and b 	 1). In this region L = 1/a and z1 = 1/4a. Hence
the density of A-vertices in the oil phase is 1

2 , and there is a zero density of vertices in the
water phase and in the interface. This is consistent with the Morita condition that on average
half the vertices are coloured A, and that this phase represents the walk residing entirely in
the oil phase.

Similarly, when we are in a region of the a–b plane in which the singularity z2 is dominant,
we choose L = b making z2 = 1/4b. This implies that there is a zero density of vertices in
the oil phase and in the interface, and that the density of B-vertices in the water phase is 1

2 .
Hence the density of A-vertices in the water phase is also 1

2 . This is consistent with the a–b

symmetry of the model.
The complicated form of L3 makes it difficult to obtain similar exact expressions for the

densities of A- and B-vertices when z3 is the dominant singularity. We would expect that there
is a positive density of A- and B-vertices in the oil and water phases and in the interface.

We start by finding the boundary between the z1-dominated and z3-dominated regions in
the a–b plane. We do this by starting in the region of the plane dominated by z1 and then



Random copolymers and the Morita approximation 7747

reduce the value of a until there is a change in the dominant singularity—this defines the
boundary. We then confirm that along this boundary there is continuity in the value of L.

When z1 is dominant, L = L1 = 1/a, and

z1 = 1

4a
(4.29)

z3 = 4a2(a − 1)(b − 1)(1 + a + ab + 2a2 − a2b)

(a + 1)2(1 − a + ab + 2a2 − 3a2b)2
. (4.30)

A little algebra shows that z1 = z3 (for this value of L) along the curve

b = 6a3 − a2 − 1

(1 − 2a + 5a2)a
0.611 858 . . . � a < 1 (4.31)

where the bounds on a are obtained by noting that b may not be negative, and that z3 does not
exist in the first quadrant. This phase boundary represents a second-order transition.

Performing a similar analysis but starting in the region of the plane dominated by z3

is difficult because L3 is the solution of a quintic. However, we note that along the curve
b = 6a3−a2−1

(1−2a+5a2)a
, the polynomial which defines L3 simplifies so that (1 − La) is a factor. This

indicates that the value of L is continuous across this phase boundary.
A similar analysis of the boundary between the regions of the a–b plane dominated by z2

and z3 shows that there is a second-order transition along the curve

a = 6b3 − b2 − 1

(1 − 2b + 5b2)b
0.611 858 . . . � b < 1 (4.32)

as expected on symmetry grounds.
This shows that the behaviour of the Morita model in the third quadrant of the a–b plane

is quite similar to that of the annealed and homopolymer models. We find that the behaviour
in the first quadrant, where there is a boundary between the z1 and z2 singularities, is distinctly
different.

4.4.4. The first quadrant. We recall that the singularity at z3 does not exist anywhere in the
first quadrant (a, b > 1) for any positive value of L.

Let us again assume that we are in a region of the a–b plane in which z1 dominates and
hence L = L1 = 1/a. This means that

z1 = 1

4a
(4.33)

z2 = a

(1 + ab)2
. (4.34)

Starting at some fixed value of a and b,and then increasing b,we find that these two singularities
meet when

b = 2 − 1

a
(4.35)

and z1 is dominant for b < 2 − 1
a

and z2 otherwise (for fixed L = L1).
Similarly, if we start from a region of the plane in which z2 is dominant and L = L2 = b,

we see that

z1 = b

(1 + ab)2
(4.36)

z2 = 1

4b
. (4.37)
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Starting from some fixed values of a, and b and increasing the value of a, we find that these
two singularities meet when

a = 2 − 1

b
(4.38)

where z2 dominates for a < 2 − 1
b

and z1 dominates otherwise (for this fixed value of L).
This analysis shows that there is a special region of the a–b plane,

a > 2 − 1

b
and b > 2 − 1

a
(4.39)

that does not exist in the annealed or homopolymer models. In this region, if we decide that
z1 is dominant, then our choice of L (determined by the Morita condition) makes z2 dominant.
Similarly, if we decide that z2 is dominant, then the choice of L (determined by the Morita
condition) makes z1 dominant. Since neither singularity can dominate the other without giving
rise to a contradiction, the two singularities must be equal throughout this region.

The condition that z1 = z2 implies that

L = Lcrit = b − 1

a − 1
(4.40)

which implies that

z1 = z2 = (a − 1)(b − 1)

(ab − 1)2
. (4.41)

Since the two singularities are equal, i.e. we have two equal free energies, we interpret this
region as the coexistence of two thermodynamic phases. We shall examine this from two
points of view. The generating function in the Morita approximation can be written as

M(z, a, b; L) = f0(z, a, b; L) + f1(z, a, b; L)
√

1 − z/z1 + f2(z, a, b; L)
√

1 − z/z2 (4.42)

where the fi are rational functions slowly varying close to z1 and z2. Consequently, the
partition function in the Morita approximation can be written as

〈Zn(a, b; L)〉 =
(

X(a, b; L)
z−n

1

n3/2
+ Y (a, b; L)

z−n
2

n3/2

)
(1 + o(1)) (4.43)

because the contribution of f0 to the partition function is exponentially smaller compared to
that of f1 and f2. We now compute the limiting average colour distance per vertex, 〈l〉, by
taking the limit of the logarithmic derivative of the partition function with respect to L. Some
algebra leads to

〈l〉 = −
(

X

X + Y

L

2

∂

∂L
log z1(a, b, L) +

Y

X + Y

L

2

∂

∂L
log z2(a, b, L)

)∣∣∣∣
L=Lcrit

= ρo〈colour distance in oil〉 + ρw〈colour distance in water〉 (4.44)

since ρo + ρw = 1, we interpret ρo and ρw as the proportions of the walk in the oil and water
phases. This also shows that the density of vertices in the interface is zero.

In order to satisfy the overall Morita condition the average colour distance must be zero,
which implies that

ρo〈colour distance in oil〉 + ρw〈colour distance in water〉 = 0 (4.45)

which together with the fact that ρo + ρw = 1 gives

ρo = ab + 1 − 2b

2(ab + 1 − a − b)
ρw = ab + 1 − 2a

2(ab + 1 − a − b)
. (4.46)
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Figure 5. The phase boundaries in the Morita approximation. The asymptotes in the first
quadrant are at log a, log b = log 2 = 0.693 . . . , while in the third quadrant they are at log a,

log b = −0.491 . . . .

One may verify that ρo = 1 along the curve b = 2 − 1/a, and ρo = 0 along the curve
a = 2 − 1/b (as required).

An alternative and equivalent point of view is to write the free energy of the system as the
sum of two terms, each corresponding to the free energy of a macroscopic portion of the walk
lying in each of the two phases. This leads to an expression equivalent to equation (4.44).

We note that the behaviour in the Morita approximation in this phase differs from that of
the quenched problem. It can be shown, using the methods of Martin et al (2000), that there is
a true localization phase in the quenched problem, in that the walk has a non-zero fraction of
vertices in the interface. The Morita approximation leads to coexistence of two phases so that
a macroscopic portion of the walk is in each of the oil and water phases, but the walk does not
necessarily cross the interface frequently (see figure 5).

4.4.5. Bounds on boundaries. In order to find bounds for the locations of the quenched phase
boundaries, we make use of two facts. First, the free energy in the Morita approximation is an
upper bound on the quenched average free energy (Kühn 1996). Second, the free energy in the
Morita approximation is equal to the quenched average free energy in the second and fourth
quadrants. Using the methods of Martin et al (2000) we can compute the quenched average
free energy in these two quadrants explicitly, and find that they are equal to those given by
the Morita approximation (κ2 = log(4b) and κ4 = log(4a)) as calculated in section 4.4. The
result for the quenched average free energy essentially follows because the walk is almost
entirely in the oil phase in the fourth quadrant of the log a–log b plane and almost entirely in
the water phase in the second quadrant (Martin et al 2000).

In figure 6 we show a sketch of the phase diagram in the Morita approximation and
a distinguished line. In the same figure, we also sketch the free energy in the Morita
approximation along this distinguished line. This shows that the phase boundaries in the
Morita approximation are bounds on the phase boundaries for the quenched model. The figure
implies that the phase boundaries are distinct, although we are not able to determine whether
or not they are, in fact, coincident.

While the phase boundaries in the Morita approximation may be a faithful reflection of
those of the quenched problem, the nature of this new phase in the first quadrant is different in
the two models, as noted above. In the Morita approximation, the walk spends roughly half
its time in each of the oil and water phases and rarely crosses the interface. In the quenched
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Figure 6. Left: a sketch of the phase boundaries of the Morita approximation. Right: the solid line
is the free energy in the Morita approximation along the dashed line shown in the phase diagram
(left). The dashed line is a continuation of the linear region, and the dot-dashed line is a sketch
of the quenched average free energy. This shows that the quenched phase boundaries lie to the
north-east (first quadrant) and south-west (third quadrant) of those of the Morita approximation.

model, on the other hand, in the localized phase the walk spends a positive fraction of its
time in each of the oil and water phases but crosses the interface frequently so that a positive
fraction of its vertices lies in the interface.

5. Discussion

We have investigated a Morita approximation for directed walk models of random copolymer
adsorption and localization, based on the combinatorial objects called Dyck paths. This
approximation, unlike the annealed approximation, requires the additional condition that on
average half the vertices be coloured A.

For the adsorption problem, we investigated two different Morita approximations in which
either all vertices are coloured or only alternate vertices are coloured. In the first case, the
differences from the annealed model are minor, and in particular the two models have the
same critical point (corresponding to adsorption) and the limiting free energies have the same
slope. The second approximation, on the other hand, leads to a significant difference, in that
the slope of the limiting free energy is identical to that of the quenched problem, and hence
has the same limiting density of A-visits. In this model, the critical point is also the same as
that of the annealed problem, and we suspect that the quenched model may also have the same
critical point (although we have no proof).

The localization problem is more interesting and we find that the Morita approximation
displays a markedly different phase diagram from that of the annealed problem, and is much
closer to that of the quenched model. In particular, the annealed model displays only two
thermodynamic phases in the first quadrant, while in the Morita approximation and quenched
model there are three. However, the nature of this new phase in the Morita approximation is
different from that of the quenched model. In the Morita approximation, the colourings may
be re-arranged so as to optimize the energy, provided that half the vertices are labelled A.
This means that the Morita approximation has no control over correlations in the sequence
of colours and so we expect that a typical walk in this new phase will spend roughly half
of its time in the oil phase with most vertices coloured A, and half in the water phase with
most vertices coloured B, and with few vertices in the interface. For most colourings in the
quenched problem, the runs of As and Bs will be short and the walk will therefore cross the
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interface frequently in order to optimize its energy. We also show that the phase boundaries of
the Morita approximation bound the locations of the phase boundaries of the quenched model.
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